Biomass burning contribution to black carbon in the Western United States Mountain Ranges
نویسندگان
چکیده
Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS). We quantify the relative contribution of biomass burning to black carbon (BC) in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the highBC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two) and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003), because of the unusually low planetary boundary layer (PBL) heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR). Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emisCorrespondence to: Q. B. Li ([email protected]) sions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.
منابع مشابه
Soil Organic Carbon Stocks and Nitrogen Content Comparison in Different Slope Positions in Native Grasslands and Adjacent Cultivated Soils (Case Study: Kermanshah Mountain Rangelands, Iran)
Global warming has been largely driven by increasing atmospheric GHG (Green House Gasses), particularly carbon dioxide caused by fossil fuels burning. The current trend can not be stopped except by reducing fossil fuel consumption or storing organic carbon in soil or earthchr('39')s biological systems such as forests, rangelands and agricultural systems. This study was conducted to determine th...
متن کاملSectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions
The sectoral and regional contributions from northern hemisphere anthropogenic and biomass burning emission sectors to black carbon (BC) distributions over the continental United States (CONUS) in summer 2008 are studied using the Sulfur Transport and dEposition Model (STEM). North American (NA) emissions heavily (>70% of total emissions) affect the BC levels from the surface tow5 km, while non...
متن کاملAbsorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns
In the spring of 2008 NASA and NOAA funded the ARCTAS and ARCPAC field campaigns as contributions to POLARCAT, a core IPY activity. During the campaigns the NASA DC-8, P-3B and NOAA WP-3D aircraft conducted over 160 h of in-situ sampling between 0.1 and 12 km throughout the Western Arctic north of 55 N (i.e. Alaska to Greenland). All aircraft were equipped with multiple wavelength measurements ...
متن کاملModulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon
Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remai...
متن کاملCombustion of Biomass as a Global Carbon Sink
This commentary article highlights the important role of black carbon produced from biomass burning in the global carbon cycle. Consideration of the fundamental chemistry and thermokinetics of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011